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Abstract — Toughening of many ceramics can be accomplished by creating dilatation in the second
phase particles that cause the matrix to crack. In this paper the stress intensity factors for annular
cracks about dilatant particles in a matrix under a normal stress are calculated.

I, INTRODUCTION

Ceramics can be toughened by second phase particles that produce a residual stress system
cither during cooling as a result of differences in the cocflicient of thermal expansion (Evans
and Cannon, 1986 Porter ¢r al., 1979 Gupta et al., 1978 ; Rihlc et al., 1986, 1987,
Davidge, 1974 Davidge and Green, 1968 Lange, 1974 Mujata ef /., 1983 ; Mccholsky.
1983) or duc to a stress-induced phase transformation. In both cases the residual stresses
may kead to microcracking depending upon the particle size (Claussen, 1976 Claussen ¢r
al . 1977 ; Rihle et ul., 1986, 1987 ; Davidge and Green, 1968 ; Davidge, 1974 Lange, 1974
Mujata ef al., 1983 ; Mcecholsky, 1983).

If the second phase particle shrinks away from the matrix tensile, radial stresses can
deflect the fracture path and cause toughening (Evans and Cannon, 1986 ; Davidge, 1974 ;
Davidge and Green, 1968). Circumferential microcracks will occur between the particles
and matrix if the particles are bigger than a certain critical size (Davidge, 1974 Davidge
and Green, 1968). These circumferentiad microcracks do not greatly aflect the streagth of
the ceramic provided the particles are not too large. This method of toughening is of
importance in many ceramics of commercial significance such as electrical porcelain con-
taining quartz filler particles.

However, this paper is aimed at ceramics where second phase particles increase in sjze
relative to the matrix and cause radial microcracks {Evans and Cannon, 1986 Porter ¢f
al., 1979; Gupta er al., 1978 Claussen, 1976; Claussen et af., 1977; Rihle er af., 1986,
1987 ; Mujata er al., 1983 ; Mecholsky, 1983). Providing the microcracks are not so large
that they readily coalesce, the dilatation caused by them can produce a significant crack
growth resistance (Evans and Faber, 1984). A secondary much smaller increase in toughness
resuits from the decrease in elastic modulus in the fracture process zone due to the micro-
cracks (Evans and Faber, 1981, 1984). The relative increase in the size of the particles
can result from differences in the coeflicient of thermal expansion (Mujata er af., 1983;
Mecholsky, 1983) or from phase transformation as in the zirconia-toughened aluminas
(Claussen, 1976; Claussen er al., 1977; Rihle er al., 1986, 1987). The residual stress
due to the volume expansion is an important factor which affects the formations of the
microcracks. In the former ceramics, stress-induced microcracking occurs if the particle
size is less than a critical value, or existing microcracks propagate if the residual stresses
alone are sufficient to cause microcracking (Mujata er al., 1983). With zirconia-toughened
alumina, radial microcracking does not usually accompany the stress-induced trans-
formation—a given particle cither transforms under the stress ficld ncar the tip of a crack
or if already transformed causes microcracking under the combined action of the residual
and applicd stresses (Rihle er al., 1986).

Existing calculations of the stress intensity factors at the tips of radial cracks emanating
from dilatation particles (Rihle e al.. 1986 Krstic and Vlajic, 1983 ; Krstic, 1984) assume
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Fig. L. "Non-particle penetrating” annular crack.

that Sneddon’s classic solution (Sneddon, 1946) for the penny-shaped crack can be used.
However, except under very high applicd stress, the crack will not propagate far into the
residual compressive stress regime of the second phase particle. A penny-shaped crack does
not accurately model the behaviour of the actual annular crack. In this paper we solve the
problem of an annular crack surrounding a sccond phase particle which undergoes a relative
size increase duce to thermal expansion or transformation using the triple integral cquation
method (Cooke, 1963 Tsai, 1984 Sclvadurat and Singh, 1984, 1985, 1987 Sclvadurai,
1985). At high applicd stress the annular crack will propagate into the residual compressive
stress regime. In somie cases where the second phase materiad is similar 1o the matrix and
very well bonded the annudar crack will propagate mto the second phase particles. An
examiple of this type of cracking is shown by Mujata er ¢f. (1983). However, in other cases
where the particle is not so well bonded, any propagation into the compressive region will
take place by the crack running along the particle/matrix interfuce (Rihle et af., 1987). The
present analysis only deals with the former type of cruck growth where the annular crack
may penetrate into the particle.

2. THE ANNULAR CRACK PROBLEM

A system consisting of a spherical particle embedded in an infinite brittle matrix and
having a surrounding annular crack is considered (Fig. 1). The case where the crack extends
into the particle is also considered (Fig. 2). Tt is assumed that the clastic constants for the
particle and the matrix are identical so that the principle of superposition can be applicd.
There are two load systems: (a) the residual stresses due to the mismatch between the
particle and matrix and (b) a uniform tensile stress o

The pressure P between the particle and the matrix is given by

P e e (1)

where for phase transformation &' is the stress-free strain and for thermal expansion
mismatches &' = (2, —%,)AT: E is the Young's modulus: v is Poisson’s ratio; x is the
coefficicnt of thermal expansion ; and the subscripts mand p refer to the matrix and particle.
In the absence of any cruck the residual stress ficld on the planc = = 0 is given by

¢.(r.0) = —P for r <R (2)

and
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Fig. 2. “particle penetrating™ annular crack.
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6.(r.0) = - (?) for r > R. (3)

9

where R is the radius of the particle. In the presence of an annular crack this residual stress
ficld is superimposed by the stress ficld

a.(r,0)=P for ¢ <r<R, “4)

P(RY
a.(r.0) = — ,)~< > for ¢, >r > R, (5)
FARNY 4
where ¢; and ¢, are the radii of the inner and outer edges of the annular crack, there are
also the added conditions that on the plane z = 0 the displacement u, is zero outside the
crack and the shear stress is zero.
The stress ficld due to an applied uniform stress 6 superimposed on the cruck system
is

g,=—0 forc <r<e,, (6)

with the conditions that in the plane = = 0, u. is zero outside the crack and the shear stress
is zero. The solution to this problem of the annular crack under uniform stress has already
been given by Selvadurai and Singh (1985), but only for ¢,/c, < 0.7.

The stress intensity factors K, and K, at the inner and outer edges of the annular crack
are given by

K = lim ¢,(r,0)./2n(c,~r), @)
K, = lim g.(r,00{/2n(r - c,). (8

3. THE SOLUTION OF THE ANNULAR CRACK PROBLEM

Hankel transforms can be used in axisymmetric problems to reduce the two inde-
pendent variables (r, ) to a single variable - (Harding and Sneddon, 1945 ; Sneddon 1946,
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1951 ; Sneddon and Lowengrub, 1969). The biharmonic equation for the stress function ¢

then becomes
d: . 2
[—_;—;*] G =0. 9)

G = J‘ rg(ryJy(cry dr, (10)

where

Jo({r) is a Bessel function of zero order and ( is a parameter. On the plane z = 0. the
longitudinal stress and displacement can be written as

E <o
o.(p.0) = (-3 Jﬂ nf (mJo(pn) dn, (I
0) = 2(-=v 4" nJ d 12
w(p.0) = T =3we S Jy(pn) dn. (12)
where p = r/e, and ¢ = /¢,
e 433(;’). (13)

Inserting the boundary conditions given in Section 2 into egns (11) and (12), we obtain the
following triple integral equations,

jb Smdolpmdn =0 (0 <p<a), (14)
J; nfmJdelpmdn=g(p) @<p<l), (15)
L SmJo(pn)dn =0 (1 <p < o), (16)
where
I 4
ooy = L= o0 a<p<, (17)

and a.(p,0) is given by eqns (4) and (5) for the residual stress and eqn (6) for the applied
stress and where a = ¢,/c,-
Let

gi1(p)=g(p) O<p<a) (18)
and

g:(p) =g9(p) (Il <p < w0). (19)

Then, we have,
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K = lim 916”—) J2e.m(2—p). (20)
and
K, = lim Qg’—) J2em(p=1), @
where
Co (1+V)(1—2V)C:. (22)

E

It is seen that one only needs to find g,(p) and g,(p) in order to determine the stress
intensity factors. We make a note that

“9 (W)

G.(s) = J e 0<s <. (23)
and
G(s) —f ("q (");’,‘,‘, (1 <s < o). 4)

Then the triple integral eqns (14-16) can be simplificd as a pair of simultancous integral
cquations for ¢,(u) and g,(u) that is written as (Cooke, 1963 ; Tsai, 1984 ; Sclvadurai and
Singh, 1984, 1985, 1987 ; Sclvadurai, 1985).

“[ . ' ug(u)du | ds
‘[ th(ﬁ)'*'J; TIPS PP

" ug)du 1 ds
‘[, GI(5)+J( )”, (p“z:w‘:)rz_

7=

F (s)ds
 iopy Ose<a
(pG (S)(;:, (I <p < ).

(25)

(26)

Let G (s) and G, (s), G,1(s) and G,,(s) satisfy the following simultaneous integral equa-

tions:

uc du

o [ 1
J G+

o2

» [ ! uodu
J; Gll(.s')'*'u (u ](p S)”’=

=) T

—s3)'2

» 1
J; [Gl2(3)+J
ug(u) du

© 1
J; [Gz:(s)’*'ﬂ E=)" | 1=

=
ug(u)du ]
Je=

Then

(p*— )”’=

2)1/2 =

o

[~ Gy (s)ds

Gy 0<p<a).
ow“@fﬁ (1<p<w),
:n(T(il.Z?(;z_ﬁf (0 <p<a),
15M2$ (1<p <o)

27
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_(+n(1=2v N

G, (s) = G, () +Ga(s)] (0 <s <), (1)

L+ =2v)c?
G-(s) = i ‘)(E agatl [Go{s)+Gaa(s)] (I <5 < x), (32)

gives the solution of integral eqns (25) and (26). Function g(u) is written as

Pf?
glu) = — S;“/r (f<u<ly, (33

for the case when the crack does not penetrate into the particle and

CP (x<u<h)

g(u) = cep’ . (34)
- _,u“ (ﬂ <wu<l)

-

if the crack penetrates into the particle, where i = R/c,.
In order to get the approximate solutions of eqns (27-30), we use a perturbation
method and express the solutions in series form,

Guls) =0y 1",4,,,(:) (0 <5< ), (35)
-1
Gu) =0 Y 2'B,(s) (1 <s<x), (36)
n—=1
Pa ¢ §
Gls) = 7“ 5 a"/:zn(‘> 0 < s <a), (37)
2,0 7]

ra

Y a'Ba(s) (1 <5< x). (38)
|

"o

Px
Gias) = 5

From Abel’s integral equation (Cooke, 1963 ; Setvadurai and Singh, 1985), we have,

20 d 7s[GL(0)+G ()] |
gilp) = p dhj, i pht ds (0 <p<a), (39)
2C d ?5[G, R} Gys(s
g:(p) = — j i _,(ig)f’ {2(})1 ds (1 <p). (40)
np dp J (p°—s°) -

The stress intensity factors for the residual stress system K/, K[ and those for the applicd
stress K7, K2 can be obtained from eqns (20-21) as a serics.

4. THE STRESS INTENSITY FACTORS FOR ANNULAR CRACKS SURROUNDING
DILATATION PARTICLES

The non-dimensional stress intensity factors at the inner and outer edges of an annular
crack under the influence of the residual stresses around a mismatched particle

(k* = K"/P/nc,) are given in Table | and are shown in Figs 3 and 4. To achicve sufficient
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Fig. 3. Non-dimensional stress intensity factor at the inner edge of an annular crack at a dilatant
e - constant ff).

particle, applied stress a = 0 (

accuracy for the stress mtensity factors for x < 0.6 1t 1s only necessary to retain about five
terms in the serics expansions for eqns (35 38). However, as x — 1 it is necessary to take
up to a hundred terms to ensure an accurate result (for x < 0,935 the accuracy is better than
0.25%). There is a hmiting solution for 2 close to unity since in this case the problem is
identical to a two-dimensional crack of length (¢, —¢,) under a state of plane strain, Hence,
the hmiting condition can be obtained by integration of the expression for the stress intensity
factor for a two-dimensional cruck with point loads on the crack faces (Paris and Sih, 1965)
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Fig. 4. Non-dimensional stress intensity factor at the outer edge of an annular crack at a dilatant
-~~~ constant /).

particle. applied stress 0 = 0 (———~— x = fi.
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k= |— | oir0y [ =5 (1)
t n(co_cl) ¢, = Co—r )
2 Co—t
K = /————j .(r.0) dr. (42)
n(c,—c) e, r—c

The non-dimensional forms of these limiting solutions are shown in Figs 3 and 4. The stress
intensity factors are given by the empirical expressions

and is given by

k,P=0.334ﬁ0'5m(l—ﬂ)°'”°, (43)
k:‘ =0'33531.25(I_B)0.483' (44)

which are accurate to 0.25% over the entire range § = 0-1.

The stress intensity factors for an annular crack under a uniform tensile stress have
already been given by Selvadurai and Singh (1985) for x up to 0.7. In their solution they
take only five terms in the expression for eqns (42-45). We have extended the range up to
a = | which again requires up to a hundred terms in eqns (42-45). The results for the non-
dimensional stress intensity factors (k” = K/o \/nc(,) are given in Table 2 and Fig. 5. Once
again a limiting solution can be obtained for % close to unity and is given by

ki = ki =(1-2"/2. (45)

These stress intensity factors are given by the empirical expressions

" (1= a:)u 131
KU =0458 "4 46)
k? = 0.644(1 —a)**%°, “

which again are accurate to 0.25% over the entire range « = 0-1.

Figure § also shows the non-dimensional stress intensity factor obtained by super-
position for a dilatant particle with uniform stress applied. The effect of a crack penctrating
the dilatant particle is shown in Fig. 6 for Pjo = 2.

Table 2. The non-dimensional stress inten-
sity factors at the inner (A7) and outer edge
(k%) of the crack

2 k7 k2
1.0 0.0395 0.0388
0.833 0.2963 0.2830
0.714 0.3984 0.3657
0.625 0.4685 0.4149
0.556 0.5231 0.4484
0.500 0.5686 0.4729
0.333 0.7324 0.5369
0.250 0.8510 0.5648
0.200 0.9499 0.5804
0.100 1.3230 0.6097
0.050 1.8455 0.6235
0.020 2.8881 0.6314

SAS 29:2-H
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5. CONCLUSIONS

The stress intensity factors for annular cracks around dilatant particles have been
obtained by use of Hankel transforms after the method of Selvadurai and Singh (1985) for
the complete range of inner to outer radii. These stress intensity factors are accurate to
0.25%. Previous calculations of the stress intensity (Rithle er al., 1987 Krstic et af., 1983
Krstic, 1984) made using Sneddon’s (1946) classic solution for a penny-shaped crack are
only approximately correct if the annular crack is very large compared with the dilatant
particle—for small annular cracks the stress intensity factors are grossly overestimated.
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The stress intensity factor at the inner edge of an annular crack formed outside a
dilatant particle is always greater than that at the outer edge. Thus there is a strong tendency
for a crack to penetrate the dilatant particle. if the particle is well bonded to the matrix.
However, if there is no applied stress. the stress intensity factor decreases rapidly as the
crack penetrates the compressive stress zone in the dilatant particle (Fig. 3). If the com-
pressive stress due to the dilatant particle is greater than the applied stress, initial crack
propagation into the dilatant particle is always stable. Crack propagation into the particle
becomes unstable only when the penetration is large.

Acknowledgements—The authors wish to thank the Australian Research Council for the support of this work
which is part of a larger project on “Structural Reliability of Tough Zirconia Ceramics”™. One of us (D.K.) is
supported by the CSIRO;Sydney University Research Scholarship.

REFERENCES

Claussen, N. (1976). Fracture toughness of Al,O, with an unstabilised Z,Q, dispersed phase. J. Am. Ceram. Soc.
89, 49.51.

Claussen, N., Steeb, J. and Pabst. R. F. (1977). Effect of induced microcracking on the fracture toughness of
ceramics. Am. Ceram. Soc. Bull. 86, 559-562,

Cooke, J. C. (1963). Triple integral equations. Quart. J. Mech. Appl. Math. 16, 193-203.

Davidge, R. W. (1974). Effects of microstructure on the mechanical properties of ceramics. In Fracture Mechanics
of Ceramics 2 (Edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange), pp. 447-468. Plenum Press, New
York.

Davidge, R, W.oand Green, T. J. (1968). The strength of two-phase ceramics/glass materials. J. Mater. Sci. 3,
629 634,

Evans, AL Gooand Cannon, R ML (1986). Overview No. 48, toughening of brittle solids by martensitic trans-
formations. Acta Metall. 34, 761 800,

Evans, A, G.and Faber, KT, (1981). Toughening of ceramics by circumferential microcracking. J. Am. Ceram.
Soc. 64, 394 X,

Evans, A, Guoand Faber, KT, (1984). Crack-growth resistance of microcricking brittle materials, J. Am. Ceram.
Soc. 67, 255 200,

Gupta, T, K., Lange, 17, F.and Bechtold, J. H. (1978). Effect of stress-induced phase transformations on the
praperties ol polycrystalline zirconia contatning metastable terragonal phase, J. Mater. Sci. 13, 1464 1470,
Harding, J. W, and Sncddon, [ N. (1945). The clastic stresses produced by the indentations of the plane surface

of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Phil. Soc. 41, 16 -26.

Krstic, V. D, (1984). Fracture of brittle solids in the presence of thermoelastic stresses. J. Am. Ceram. Soc. 67,
389 §93.

Krstic, V. D, and Vigjic, M. D. (1983). Conditions for spontancous cracking of a brittle matrix due to the presence
of thermoclastic stresses. Acta Metall. 31, 139144,

Lange, . F.(1974). Criteria for crack extension and arrest in residual, localized stress fields associated with
second phase particles. In Fracture Mechanics of Ceramics 2 (Edited by R. C. Bradt, D. P. H. Hasselman and
FoF. Lange), pp. 559 -609. Plenum Press, New York.

Mechalsky, J. J. (1983). Toughening in glass ceramics through microstructural design. In Fracture Mechanics of
Ceramics 6 (Edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange), pp. 165-180. Plenum
Press, New York.

Mujata, N., Lumgawa, K. and Ginno, H. (1983). Fracture behavior of gluss matrix/glass particle composites. In
Fructure Mechanics of Ceramics 5 (Edited by R. G. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange),
pp. 609 634, Plenum Press, New York.

Paris, P. C. and Sih, A, G. (1965). Stress analysis of cracks. In Fracture Roughness Testing and Applications,
ASTM STP 381, 30 82, Philadelphia.

Porter, . L., Evans, A. G. and Heuer, H. H. (1979). Transformations toughening in partially stabilized zirconia
(PSZ). Acta. Metall. 27, 1649 1654,

Riihle, M., Clauss¢n, N. and Heuer, A, H. (1986). Transformations and microcracking toughening as comp-
lementary process in Z,0;-toughened ALO,. J. Am. Ceram, Soc. 69, 195-197.

Rahle, M., Evans, A. G., McMecking, R. M., Charalamides, P. G. and Hutchinson, J. W, (1987). Microcrack
toughening in alumina/zicconia. Acta. Metall. 35, 2701 -2710.

Sclvadurai, A. P. S. (1985). On integral cquations governing an internally indented penny-shaped crack. Mech.
Res. Com, 12, 347-351,

Selvadurai, A. P. S. and Singh, B. M. (1984). On the cxpansion of a penny-shaped crack by a rigid circular disc
inclusion. Int. J. Frac, 25, 59 -77.

Scivadurai, A. P. S. and Singh, B. M. (1985). The annular crack problem for an isotropic clastic solid. Quart. J.
Mech. Appl. Math. 38, 233 243,

Selvadurat, A, P. S, and Singh, B. M. (1987). Axisymmetric problems for an externally cracked elastic solid. .
Effect of a penny-shaped crack. Int. J. Engng Sci. 25, 1049-1057.

Sneddon. I N. (1946). The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. Roy.
Soc. (London) A187, 229--260.

Sneddon, 1. N. (1951). Fourier Transforms. McGraw-Hill, New York.




K. DUAN ¢ dl

242
Sneddon. L. N. and Lowengrub, M. (1969). Cruck Problems in the Clussical Theory of Elasticity. John Wiley,

New York.
Timoshenko. S. and Goodier, J. N. (1933). Theory of Elusticity. McGraw-Hill, New York.
Tsai. Y. M. (1984). Indentation of a penny-shaped crack by un oblate spheroidal rigid inclusion in a transversely

isotropic medium. J. Appl. Mech. Trans. (ASME) 51, 811-813.



